Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.

Identifieur interne : 002088 ( Main/Exploration ); précédent : 002087; suivant : 002089

Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.

Auteurs : Yannick H. Ouellet [Canada] ; Richard Daigle ; Patrick Lagüe ; David Dantsker ; Mario Milani ; Martino Bolognesi ; Joel M. Friedman ; Michel Guertin

Source :

RBID : pubmed:18676995

Descripteurs français

English descriptors

Abstract

The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).

DOI: 10.1074/jbc.M804215200
PubMed: 18676995
PubMed Central: PMC2556007


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.</title>
<author>
<name sortKey="Ouellet, Yannick H" sort="Ouellet, Yannick H" uniqKey="Ouellet Y" first="Yannick H" last="Ouellet">Yannick H. Ouellet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Laval University, Quebec, Canada, G1K 7P4.</nlm:affiliation>
<orgName type="university">Université Laval</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Daigle, Richard" sort="Daigle, Richard" uniqKey="Daigle R" first="Richard" last="Daigle">Richard Daigle</name>
</author>
<author>
<name sortKey="Lague, Patrick" sort="Lague, Patrick" uniqKey="Lague P" first="Patrick" last="Lagüe">Patrick Lagüe</name>
</author>
<author>
<name sortKey="Dantsker, David" sort="Dantsker, David" uniqKey="Dantsker D" first="David" last="Dantsker">David Dantsker</name>
</author>
<author>
<name sortKey="Milani, Mario" sort="Milani, Mario" uniqKey="Milani M" first="Mario" last="Milani">Mario Milani</name>
</author>
<author>
<name sortKey="Bolognesi, Martino" sort="Bolognesi, Martino" uniqKey="Bolognesi M" first="Martino" last="Bolognesi">Martino Bolognesi</name>
</author>
<author>
<name sortKey="Friedman, Joel M" sort="Friedman, Joel M" uniqKey="Friedman J" first="Joel M" last="Friedman">Joel M. Friedman</name>
</author>
<author>
<name sortKey="Guertin, Michel" sort="Guertin, Michel" uniqKey="Guertin M" first="Michel" last="Guertin">Michel Guertin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18676995</idno>
<idno type="pmid">18676995</idno>
<idno type="doi">10.1074/jbc.M804215200</idno>
<idno type="pmc">PMC2556007</idno>
<idno type="wicri:Area/Main/Corpus">002067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002067</idno>
<idno type="wicri:Area/Main/Curation">002067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002067</idno>
<idno type="wicri:Area/Main/Exploration">002067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.</title>
<author>
<name sortKey="Ouellet, Yannick H" sort="Ouellet, Yannick H" uniqKey="Ouellet Y" first="Yannick H" last="Ouellet">Yannick H. Ouellet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Laval University, Quebec, Canada, G1K 7P4.</nlm:affiliation>
<orgName type="university">Université Laval</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Daigle, Richard" sort="Daigle, Richard" uniqKey="Daigle R" first="Richard" last="Daigle">Richard Daigle</name>
</author>
<author>
<name sortKey="Lague, Patrick" sort="Lague, Patrick" uniqKey="Lague P" first="Patrick" last="Lagüe">Patrick Lagüe</name>
</author>
<author>
<name sortKey="Dantsker, David" sort="Dantsker, David" uniqKey="Dantsker D" first="David" last="Dantsker">David Dantsker</name>
</author>
<author>
<name sortKey="Milani, Mario" sort="Milani, Mario" uniqKey="Milani M" first="Mario" last="Milani">Mario Milani</name>
</author>
<author>
<name sortKey="Bolognesi, Martino" sort="Bolognesi, Martino" uniqKey="Bolognesi M" first="Martino" last="Bolognesi">Martino Bolognesi</name>
</author>
<author>
<name sortKey="Friedman, Joel M" sort="Friedman, Joel M" uniqKey="Friedman J" first="Joel M" last="Friedman">Joel M. Friedman</name>
</author>
<author>
<name sortKey="Guertin, Michel" sort="Guertin, Michel" uniqKey="Guertin M" first="Michel" last="Guertin">Michel Guertin</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Heme (chemistry)</term>
<term>Heme (genetics)</term>
<term>Heme (metabolism)</term>
<term>Horses (genetics)</term>
<term>Horses (metabolism)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Iron (chemistry)</term>
<term>Iron (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycobacterium tuberculosis (chemistry)</term>
<term>Mycobacterium tuberculosis (genetics)</term>
<term>Mycobacterium tuberculosis (metabolism)</term>
<term>Myoglobin (chemistry)</term>
<term>Myoglobin (genetics)</term>
<term>Myoglobin (metabolism)</term>
<term>Nitrates (chemistry)</term>
<term>Nitrates (metabolism)</term>
<term>Nitric Oxide (chemistry)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Truncated Hemoglobins (chemistry)</term>
<term>Truncated Hemoglobins (genetics)</term>
<term>Truncated Hemoglobins (metabolism)</term>
<term>Water (chemistry)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Eau (métabolisme)</term>
<term>Equus caballus (génétique)</term>
<term>Equus caballus (métabolisme)</term>
<term>Fer (composition chimique)</term>
<term>Fer (métabolisme)</term>
<term>Hème (composition chimique)</term>
<term>Hème (génétique)</term>
<term>Hème (métabolisme)</term>
<term>Hémoglobines tronquées (composition chimique)</term>
<term>Hémoglobines tronquées (génétique)</term>
<term>Hémoglobines tronquées (métabolisme)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Monoxyde d'azote (composition chimique)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Mycobacterium tuberculosis (composition chimique)</term>
<term>Mycobacterium tuberculosis (génétique)</term>
<term>Mycobacterium tuberculosis (métabolisme)</term>
<term>Myoglobine (composition chimique)</term>
<term>Myoglobine (génétique)</term>
<term>Myoglobine (métabolisme)</term>
<term>Nitrates (composition chimique)</term>
<term>Nitrates (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Heme</term>
<term>Iron</term>
<term>Myoglobin</term>
<term>Nitrates</term>
<term>Nitric Oxide</term>
<term>Truncated Hemoglobins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Heme</term>
<term>Myoglobin</term>
<term>Truncated Hemoglobins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Heme</term>
<term>Iron</term>
<term>Myoglobin</term>
<term>Nitrates</term>
<term>Nitric Oxide</term>
<term>Truncated Hemoglobins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
<term>Fer</term>
<term>Hème</term>
<term>Hémoglobines tronquées</term>
<term>Monoxyde d'azote</term>
<term>Mycobacterium tuberculosis</term>
<term>Myoglobine</term>
<term>Nitrates</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Horses</term>
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Equus caballus</term>
<term>Hème</term>
<term>Hémoglobines tronquées</term>
<term>Mycobacterium tuberculosis</term>
<term>Myoglobine</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Horses</term>
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Equus caballus</term>
<term>Fer</term>
<term>Hème</term>
<term>Hémoglobines tronquées</term>
<term>Monoxyde d'azote</term>
<term>Mycobacterium tuberculosis</term>
<term>Myoglobine</term>
<term>Nitrates</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Hydrogen Bonding</term>
<term>Kinetics</term>
<term>Ligands</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cinétique</term>
<term>Liaison hydrogène</term>
<term>Ligands</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18676995</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2008</Year>
<Month>Oct</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.</ArticleTitle>
<Pagination>
<MedlinePgn>27270-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M804215200</ELocationID>
<Abstract>
<AbstractText>The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ouellet</LastName>
<ForeName>Yannick H</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, Laval University, Quebec, Canada, G1K 7P4.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daigle</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lagüe</LastName>
<ForeName>Patrick</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dantsker</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Milani</LastName>
<ForeName>Mario</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bolognesi</LastName>
<ForeName>Martino</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Friedman</LastName>
<ForeName>Joel M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guertin</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1-R01-AI052258</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C102539">GlbN protein, bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054793">Truncated Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006736" MajorTopicYN="N">Horses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009211" MajorTopicYN="N">Myoglobin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054793" MajorTopicYN="N">Truncated Hemoglobins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18676995</ArticleId>
<ArticleId IdType="pii">M804215200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M804215200</ArticleId>
<ArticleId IdType="pmc">PMC2556007</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Res Commun. 1993;18(4):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 May 23;345(1):50-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8194600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Feb 6;130(5):1688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18189394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 1;277(9):7509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11744723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Oct 24;129(42):12756-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17910446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Feb 7;272(6):3465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9013592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):5177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1999 Nov 15;56(7-8):549-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Mar 7;45(9):2820-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 4;35(22):6976-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2001 Jan;26(1):21-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11165512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 9;273(41):26528-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9756889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 May 15;40(19):5728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11341838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Sep 16;36(37):11198-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9287162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 18;280(46):38740-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Feb 25;265(6):3168-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2303446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 12;277(28):25783-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1999 Oct;77(4):2153-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 1;20(15):3902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Nov 5;234(1):140-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Nov 22;121(20):10096-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Dec 19;356(2-3):295-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7805858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jul 26;271(30):17593-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8698688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5902-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1997 Nov;10(11):1285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9403183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35868-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10915782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 Jun 25;158(2):305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7120414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Aug 15;398(1-2):234-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 25;45(29):8770-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16846220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 1;1749(2):234-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15914102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Jan 27;245(4):416-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7837273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Aug;25(11):1400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 3;272(40):25071-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9312115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 10;279(37):38844-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Mar 10;126(9):2682-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14995168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Québec (ville)</li>
</settlement>
<orgName>
<li>Université Laval</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bolognesi, Martino" sort="Bolognesi, Martino" uniqKey="Bolognesi M" first="Martino" last="Bolognesi">Martino Bolognesi</name>
<name sortKey="Daigle, Richard" sort="Daigle, Richard" uniqKey="Daigle R" first="Richard" last="Daigle">Richard Daigle</name>
<name sortKey="Dantsker, David" sort="Dantsker, David" uniqKey="Dantsker D" first="David" last="Dantsker">David Dantsker</name>
<name sortKey="Friedman, Joel M" sort="Friedman, Joel M" uniqKey="Friedman J" first="Joel M" last="Friedman">Joel M. Friedman</name>
<name sortKey="Guertin, Michel" sort="Guertin, Michel" uniqKey="Guertin M" first="Michel" last="Guertin">Michel Guertin</name>
<name sortKey="Lague, Patrick" sort="Lague, Patrick" uniqKey="Lague P" first="Patrick" last="Lagüe">Patrick Lagüe</name>
<name sortKey="Milani, Mario" sort="Milani, Mario" uniqKey="Milani M" first="Mario" last="Milani">Mario Milani</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Ouellet, Yannick H" sort="Ouellet, Yannick H" uniqKey="Ouellet Y" first="Yannick H" last="Ouellet">Yannick H. Ouellet</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18676995
   |texte=   Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18676995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020